Question
The arithmetic sequence, 1487, 4817, 8147, in which each of the terms increases by 3330, is unusual in two ways: (i) each of the three terms are prime, and, (ii) each of the 4-digit numbers are permutations of one another.
There are no arithmetic sequences made up of three 1-, 2-, or 3-digit primes, exhibiting this property, but there is one other 4-digit increasing sequence.
What 12-digit number do you form by concatenating the three terms in this sequence?
Haskell
import Data.List (sort)
primes :: [Int]
primes = 2 : sieve primes [3,5..] where
sieve (p:ps) xs = h ++ sieve ps [x | x <- t, rem x p /= 0]
where (h, t) = span (< p*p) xs
isPrime :: Int -> Bool
isPrime n | n < 1 = False
| otherwise = not $ or [n `rem` x == 0 | x <- [2..floor $ sqrt $ fromIntegral n]]
candidates :: [[Int]]
candidates = tail [ps | p <- dropWhile (< 1000) primes,
let ps = [p, p + 3330, p + 6660],
all isPrime ps,
let sorted = map (sort . show) ps,
all (== head sorted) sorted]
main :: IO ()
main = putStrLn $ concatMap show $ head candidates
$ ghc -O2 -o prime-permutations prime-permutations.hs
$ time ./prime-permutations
real 0m0.002s
user 0m0.000s
sys 0m0.002s
Python
#!/usr/bin/env python
# The arithmetic sequence, 1487, 4817, 8147, in which each of the
# terms increases by 3330, is unusual in two ways: (i) each of the
# three terms are prime, and, (ii) each of the 4-digit numbers are
# permutations of one another.
#
# There are no arithmetic sequences made up of three 1-, 2-, or
# 3-digit primes, exhibiting this property, but there is one other
# 4-digit increasing sequence.
#
# What 12-digit number do you form by concatenating the three terms
# in this sequence?
import math
from itertools import *
from collections import defaultdict
from functools import reduce
def factorize(n):
if n < 1:
raise ValueError('fact() argument should be >= 1')
if n == 1:
return [] # special case
res = []
# iterate over all even numbers first.
while n % 2 == 0:
res.append(2)
n //= 2
# try odd numbers up to sqrt(n)
limit = math.sqrt(n+1)
i = 3
while i <= limit:
if n % i == 0:
res.append(i)
n //= i
limit = math.sqrt(n+i)
else:
i += 2
if n != 1:
res.append(n)
return res
def num_divisors(n):
factors = sorted(factorize(n))
histogram = defaultdict(int)
for factor in factors:
histogram[factor] += 1
# number of divisors is equal to product of
# incremented exponents of prime factors
from operator import mul
try:
return reduce(mul, [exponent + 1 for exponent in list(histogram.values())])
except:
return 1
def is_permutations(seq):
s = [str(x) for x in seq]
p = [''.join(x) for x in permutations(s[0])]
for i in s:
if i not in p:
return False
return True
def is_prime(num):
if num % 2 == 0:
return False
if num % 3 == 0:
return False
if num_divisors(num) == 2 and num > 1:
return True
else:
return False
def sieve(n):
numbers = list(range(2, n+1))
p = 2
j = 0
done = False
while not done:
for i, n in enumerate(numbers):
if n % p == 0 and n!=p:
numbers.pop(i)
j += 1
p = numbers[j]
if p**2 > n:
done = True
return numbers
def arithmetic_subsequences(seq, length=3):
for x in seq:
steps = [y-x for y in seq[seq.index(x):]]
for step in steps:
if step == 0: continue
found = True
for i in range(length):
if not x + (i*step) in seq:
found = False
if found:
yield [x + (i*step) for i in range(length)]
def main():
primes = [p for p in sieve(10000) if len(str(p)) == 4]
print(max(''.join(str(x) for x in seq) for seq in arithmetic_subsequences(primes, 3) if is_permutations(seq)))
if __name__ == "__main__":
main()
Ruby
#!/usr/bin/env ruby
require 'mathn'
primes = (1488..9999).select { |n| n.prime? }
primes.each do |a|
primes.select { |b| b > a }.each do |b|
primes.select { |c| c > b }.each do |c|
if c-b == b-a &&
a.to_s.split('').sort == b.to_s.split('').sort &&
b.to_s.split('').sort == c.to_s.split('').sort &&
c.to_s.split('').sort == a.to_s.split('').sort
puts a.to_s + b.to_s + c.to_s; exit
end
end
end
end