Question
Take the number 192 and multiply it by each of 1, 2, and 3:
\begin{aligned} 192 \times 1 & = 192 \\ 192 \times 2 & = 384 \\ 192 \times 3 & = 576 \end{aligned}
By concatenating each product we get the 1 to 9 pandigital, 192384576. We will call 192384576 the concatenated product of 192 and (1,2,3).
The same can be achieved by starting with 9 and multiplying by 1, 2, 3, 4, and 5, giving the pandigital, 918273645, which is the concatenated product of 9 and (1,2,3,4,5).
What is the largest 1 to 9 pandigital 9-digit number that can be formed as the concatenated product of an integer with 1,2,...,n where n \gt 1?
Haskell
import Data.List (sort)
pandigital :: String -> Bool
= (== "123456789") . sort
pandigital
multiples :: Int -> [String]
= takeWhile ((== 9) . length) $ dropWhile ((< 9) . length) $ scanl (\acc n -> acc ++ show (x * n)) (show x) [2..]
multiples x
main :: IO ()
= putStrLn $ maximum $ filter pandigital $ concatMap multiples [1..10000] main
$ ghc -O2 -o pandigital-multiples pandigital-multiples.hs
$ time ./pandigital-multiples
real 0m0.006s
user 0m0.000s
sys 0m0.006s
Python
#!/usr/bin/env python
def is_pandigital(*args, **kwargs):
= sorted(''.join(str(arg) for arg in args))
num
try:
if kwargs['length'] and len(num) != kwargs['length']:
return False
except KeyError:
pass
for i in range(len(num)):
if str(i+1) != str(num[i]):
return False
return True
def concatenated_product(number, n):
try:
return int(''.join(str(number * i) for i in range(1,n+1)))
except ValueError:
print(number, n)
def main():
print(max(concatenated_product(i, n) for i in range(10000) for n in range(1, 10) if is_pandigital(concatenated_product(i, n))))
if __name__ == "__main__":
main()
$ time python3 pandigital-concatenation.py
real 0m0.927s
user 0m0.927s
sys 0m0.000s
Ruby
#!/usr/bin/env ruby
p (1..9999).flat_map { |i|
1..9).map { |j|
(1..j).map { |k|
(* k
i }.reduce('') { |s,v| s + v.to_s }
}
}.select { |s|
.length == 9 && s.split('').sort.join('') == '123456789'
s}.map { |s| s.to_i }.max
$ time ruby pandigital-concatenation.rb
real 0m0.361s
user 0m0.361s
sys 0m0.000s