Question
The sum of the primes below 10 is .
Find the sum of all the primes below two million.
Clojure
#!/usr/bin/env clojure
(defn primes [n]
(defn improve [p nums]
(filter #(or
(not (= (rem % p) 0))
(= % p))
nums))
(defn prime-iter [p nums i]
(if (> (* p p) n)
nums
(prime-iter (nth nums (+ i 1)) (improve (nth nums (+ i 1)) nums) (+ i 1))))
(prime-iter 2 (range 2 (+ n 1)) -1))
(println (reduce + (primes 2000000)))
Go
package main
import "fmt"
import "math"
func PrimeSieve(n int64) []int64 {
result := make([]int64, 0, n/int64(math.Log(float64(n))))
sieve := make([]bool, n+1)
sn := int64(math.Sqrt(float64(n)))
var i, j int64
for i = 2; i <= sn; i++ {
if !sieve[i] {
for j = i * i; j <= n; j += i {
sieve[j] = true
}
}
}
for i = 2; i <= n; i++ {
if !sieve[i] {
result = append(result, i)
}
}
return result
}
func main() {
primes := PrimeSieve(2000000)
var sum int64 = 0
for _, p := range primes {
sum += p
}
fmt.Println(sum)
}
Haskell
primes :: [Integer]
primes = 2 : sieve primes [3,5..] where
sieve (p:ps) xs = h ++ sieve ps [x | x <- t, rem x p /= 0]
where (h, t) = span (< p*p) xs
main :: IO ()
main = print $ sum $ takeWhile (< 2000000) primes
JavaScript
const sieve = {}
let s = 0
for (let q = 2; q < 2000000; q++) {
if (sieve[q]) {
sieve[q].forEach((p) => {
const list = sieve[p + q] || []
list.push(p)
sieve[p + q] = list
})
delete sieve[q]
} else {
s += q
sieve[q * q] = [q]
}
}
console.log(s)
Python
#!/usr/bin/env python
from itertools import takewhile
def eratosthenes():
'''Yields the sequence of prime numbers via the Sieve of Eratosthenes.'''
D = {} # map composite integers to primes witnessing their compositeness
q = 2 # first integer to test for primality
while 1:
if q not in D:
yield q # not marked composite, must be prime
D[q*q] = [q] # first multiple of q not already marked
else:
for p in D[q]: # move each witness to its next multiple
D.setdefault(p+q,[]).append(p)
del D[q] # no longer need D[q], free memory
q += 1
print(sum(takewhile(lambda x: x < 2000000, eratosthenes())))
Ruby
Rust
fn eratosthenes(limit: usize) -> Vec<usize> {
let mut sieve = vec![true; limit];
let mut p = 2;
loop {
// Eliminate multiples of p.
let mut i = 2 * p - 1;
while i < limit {
sieve[i] = false;
i += p;
}
// Find the next prime.
if let Some(n) = (p..limit).find(|&n| sieve[n]) {
p = n + 1;
} else {
break;
}
}
sieve
.iter()
.enumerate()
.filter(|&(_, &is_prime)| is_prime)
.skip(1)
.map(|(i, _)| i + 1)
.collect()
}
fn main() {
let sum: usize = eratosthenes(2000000).iter().sum();
println!("{}", sum);
}